Computational Bayesian Statistics

aw_product_id: 
25579423573
merchant_image_url: 
https://cdn.waterstones.com/bookjackets/large/9781/1087/9781108703741.jpg
merchant_category: 
Books
search_price: 
29.99
book_author_name: 
M. Antonia Amaral Turkman
book_type: 
Paperback
publisher: 
Cambridge University Press
published_date: 
28/02/2019
isbn: 
9781108703741
Merchant Product Cat path: 
Books > Science, Technology & Medicine > Mathematics & science > Mathematics > Probability & statistics
specifications: 
M. Antonia Amaral Turkman|Paperback|Cambridge University Press|28/02/2019
Merchant Product Id: 
9781108703741
Book Description: 
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.

Graphic Design by Ishmael Annobil /  Web Development by Ruzanna Hovasapyan